skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tep, Kerwann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The long-term relaxation of rotating, spherically symmetric globular clusters is investigated through an extension of the orbit-averaged Chandrasekhar non-resonant formalism. A comparison is made with the long-term evolution of the distribution function in action space, measured from averages of sets ofN-body simulations up to core collapse. The impact of rotation on in-plane relaxation is found to be weak. In addition, we observe a clear match between theoretical predictions andN-body measurements. For the class of rotating models considered, we find no strong gravo-gyro catastrophe accelerating core collapse. Both kinetic theory and simulations predict a reshuffling of orbital inclinations from overpopulated regions to underpopulated ones. This trend accelerates as the amount of rotation is increased. Yet, for orbits closer to the rotational plane, the non-resonant prediction does not reproduce numerical measurements. We argue that this mismatch stems from these orbits’ coherent interactions, which are not captured by the non-resonant formalism that only addresses local deflections. 
    more » « less